Login / Signup

Superprotonic conductivity in RbH 2-3 y (PO 4 ) 1- y : a phosphate deficient analog to cubic CsH 2 PO 4 in the (1 - x )RbH 2 PO 4 - x Rb 2 HPO 4 system.

Grace XiongLouis S WangSossina M Haile
Published in: Materials horizons (2023)
In contrast to CsH 2 PO 4 (cesium dihydrogen phosphate, CDP), a material with a well-established superprotonic transition to a high conductivity state at 228 °C, RbH 2 PO 4 (rubidium dihydrogen phosphate, RDP) decomposes upon heating under ambient pressure conditions. Here we find, from study of the (1 - x )RbH 2 PO 4 - x Rb 2 HPO 4 system, the remarkable occurrence of cubic, off-stoichiometric RbH 2-3 y (PO 4 ) 1- y , or α-RDP, with a variable Rb : PO 4 ratio. Materials were characterized by simultaneous thermal analysis and in situ X-ray powder diffraction performed under high steam partial pressure, from which the phase diagram between RbH 2 PO 4 ( x = 0) and Rb 5 H 7 (PO 4 ) 4 ( x = 1/4) was established. The system displays eutectoid behavior, with a eutectoid transition temperature of 242.0 ± 0.5 °C and eutectoid composition of x = 0.190 ± 0.004. Even the end-member Rb 5 H 7 (PO 4 ) 4 appears to transform to α-RDP, implying y in the chemical formula of 0.2 and a phosphate site vacancy concentration as high as 20%. Charge balance is attained by a decrease in the average number of protons on the remaining phosphate groups. The cubic lattice parameter at x = 0.180, near the eutectoid composition, and at a temperature of 249 °C is 4.7138(2) Å. This value is substantially smaller than the estimated ambient-pressure lattice parameter of stoichiometric RbH 2 PO 4 of 4.837(12) Å, consistent with the proposal of phosphate site vacancies in the former. The superprotonic conductivity of the x = 0.180 material is 6 × 10 -3 S cm -1 at 244 °C, a factor of three lower than that of CDP at the same temperature. While the engineering properties of α-RDP do not suggest immediate technological relevance, the discovery of a superprotonic solid acid with a high concentration of phosphate site vacancies opens new avenues for developing proton conducting electrolytes, and in particular, for controlling their transition behavior.
Keyphrases
  • visible light
  • risk assessment
  • small molecule
  • magnetic resonance imaging
  • particulate matter
  • high resolution
  • high throughput
  • human milk
  • low birth weight