Login / Signup

Essential Oils of Five Baccharis Species: Investigations on the Chemical Composition and Biological Activities.

Jane Manfron BudelMei WangVijayasankar RamanJianping ZhaoShabana I KhanJunaid U RehmanNatascha TechenBabu TekwaniLuciane M MonteiroGustavo HeidenInês J M TakedaPaulo V FaragoIkhlas A Khan
Published in: Molecules (Basel, Switzerland) (2018)
This paper provides a comparative account of the essential oil chemical composition and biological activities of five Brazilian species of Baccharis (Asteraceae), namely B. microdonta, B. pauciflosculosa, B. punctulata, B. reticularioides, and B. sphenophylla. The chemical compositions of three species (B. pauciflosculosa, B. reticularioides, and B. sphenophylla) are reported for the first time. Analyses by GC/MS showed notable differences in the essential oil compositions of the five species. α-Pinene was observed in the highest concentration (24.50%) in B. reticularioides. Other major compounds included α-bisabolol (23.63%) in B. punctulata, spathulenol (24.74%) and kongol (22.22%) in B. microdonta, β-pinene (18.33%) and limonene (18.77%) in B. pauciflosculosa, and β-pinene (15.24%), limonene (14.33%), and spathulenol (13.15%) in B. sphenophylla. In vitro analyses for antimalarial, antitrypanosomal, and insecticidal activities were conducted for all of the species. B. microdonta and B. reticularioides showed good antitrypanosomal activities; B. sphenophylla showed insecticidal activities in fumigation bioassay against bed bugs; and B. pauciflosculosa, B. reticularioides, and B. sphenophylla exhibited moderate antimalarial activities. B. microdonta and B. punctulata showed cytotoxicity. The leaves and stems of all five species showed glandular trichomes and ducts as secretory structures. DNA barcoding successfully determined the main DNA sequences of the investigated species and enabled authenticating them.
Keyphrases
  • essential oil
  • genetic diversity
  • high resolution