Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae).
Tijana MićovićDijana TopalovićLada ŽivkovićBiljana Spremo-PotparevićJakovljevic Lj VladimirSanja MatićSuzana PopovićDejan BaskićDanijela SteševićStevan SamardžićDanilo StojanovićZoran MaksimovićPublished in: Plants (Basel, Switzerland) (2021)
Hyssopus officinalis L. is a well-known aromatic plant used in traditional medicine and the food and cosmetics industry. The aim of this study is to assess the antioxidant, genotoxic, antigenotoxic and cytotoxic properties of characterized hyssop essential oils and methanol extracts. Chemical composition was analyzed by gas chromatography - mass spectrometry (GC-MS) and liquid chromatography with diode array detection and mass spectrometry (LC-DAD-MS), respectively. Antioxidant activity was examined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) tests; genotoxic and antigenotoxic activity were examined by the comet assay, while cytotoxicity was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide dye (MTT) test against tumor cell lines (SW480, MDA-MB 231, HeLa) and non-transformed human lung fibroblast cell lines (MRC-5). The essential oils were rich in monoterpene hydrocarbons (e.g., limonene; 7.99-23.81%), oxygenated monoterpenes (1,8-cineole; 38.19-67.1%) and phenylpropanoids (methyl eugenol; 0.00-28.33%). In methanol extracts, the most abundant phenolics were chlorogenic and rosmarinic acid (23.35-33.46 and 3.53-17.98 mg/g, respectively). Methanol extracts expressed moderate to weak antioxidant activity (DPPH IC50 = 56.04-199.89 µg/mL, FRAP = 0.667-0.959 mmol Fe2+/g). Hyssop preparations significantly reduced DNA damage in human whole blood cells, induced by pretreatment with hydrogen peroxide. Methanol extracts exhibited selective and potent dose- and time-dependent activity against the HeLa cell line. Results of the current study demonstrated notable H. officinalis medicinal potential, which calls for further investigation.
Keyphrases
- mass spectrometry
- liquid chromatography
- hydrogen peroxide
- oxidative stress
- carbon dioxide
- dna damage
- cell cycle arrest
- gas chromatography mass spectrometry
- anti inflammatory
- ms ms
- multiple sclerosis
- gas chromatography
- tandem mass spectrometry
- simultaneous determination
- high resolution
- induced apoptosis
- solid phase extraction
- nitric oxide
- dna repair
- high performance liquid chromatography
- climate change
- highly efficient
- quantum dots
- cell death
- high resolution mass spectrometry