Login / Signup

Benchtop 19 F NMR spectroscopy as a practical tool for testing of remedial technologies for the degradation of perfluorooctanoic acid, a persistent organic pollutant.

Kavi HeerahStanislaw WaclawekJulie KonzukJames G Longstaffe
Published in: Magnetic resonance in chemistry : MRC (2020)
The development of effective remedial technologies for the destruction of environmental pollutants requires the ability to clearly monitor degradation processes. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding reaction progress; however, practical considerations often restrict the application of NMR spectroscopy as a tool to better understand the degradation of environmental pollutants. Chief among these restrictions is the limited access smaller environmental research labs and remediation companies have to suitable NMR facilities. Benchtop NMR spectroscopy is a low-cost and user-friendly approach to acquire much of the same information as conventional nuclear magnetic resonance (NMR) spectroscopy, albeit with reduced sensitivity and resolution. This paper explores the practical application of benchtop NMR spectroscopy to understand the degradation of perfluorooctanoic acid using sodium persulfate, a common reagent for the destruction of groundwater contaminants. It is found that Benchtop 19 F NMR spectroscopy is able to monitor the complete degradation of perfluorooctanoic acid into fluoride; however, the observation of intermediate degradation products formed, which can be observed using a conventional NMR spectrometer, cannot be readily distinguished from the parent compound when measurements are performed using the benchtop instrument. Under certain reaction conditions, the formation of fluorinated structures that are resistant to further degradation is readily observed. Overall, it is shown that benchtop 19 F NMR spectroscopy has potential as a quick and reliable tool to assist in the development of remedial technologies for the degradation of fluorinated contaminants.
Keyphrases
  • magnetic resonance
  • high resolution
  • human health
  • heavy metals
  • healthcare
  • magnetic resonance imaging
  • computed tomography