Login / Signup

Perfecting Liquid-State Theories with Machine Intelligence.

Jianzhong WuMengyang Gu
Published in: The journal of physical chemistry letters (2023)
Recent years have seen a significant increase in the use of machine intelligence for predicting the electronic structure, molecular force fields, and physicochemical properties of various condensed systems. However, substantial challenges remain in developing a comprehensive framework capable of handling a wide range of atomic compositions and thermodynamic conditions. This perspective discusses potential future developments in liquid-state theories leveraging recent advancements in functional machine learning. By harnessing the strengths of theoretical analysis and machine learning techniques including surrogate models, dimension reduction, and uncertainty quantification, we envision that liquid-state theories will gain significant improvements in accuracy, scalability, and computational efficiency, enabling their broader applications across diverse materials and chemical systems.
Keyphrases
  • machine learning
  • deep learning
  • ionic liquid
  • big data
  • artificial intelligence
  • climate change
  • human health