Login / Signup

Preparation of a Si(111) Atomically Flat Substrate via Wet Etching and Evaluation as an AFM Substrate for Observations of Isolated Chains, Crystals, and Crystallization of Isotactic Poly(methyl methacrylate) at the Molecular Level.

Yuki SasaharaYuya MiyakeJiro Kumaki
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
To observe a polymer chain deposited on a substrate by atomic force microscopy (AFM) at the molecular level, the substrate should be atomically flat and stable under laboratory conditions and adsorb polymer chains firmly. Therefore, substrates used under laboratory conditions are practically limited to mica, highly ordered pyrolytic graphite, and atomically stepped sapphire, and polymers observed by AFM at the molecular level are also limited. A silicon wafer is frequently used as a substrate for AFM observation for somewhat macroscopic observations, but the surface of the silicon wafer is too rough to observe polymer chains deposited on it at the molecular level. In this study, we prepared an atomically stepped Si(111) substrate via wet etching in NH4F and evaluated it as an AFM substrate. The Si(111) substrate was stable as an AFM substrate, and isolated poly(methyl methacrylate) (it-PMMA) chains and a crystalline monolayer deposited on the substrate were observed by AFM at the molecular level. An it-PMMA amorphous monolayer deposited on mica crystallized under high humidity, but that on the Si(111) substrate did not because of the difference in the surface nature and the crystal structure of the substrates. The Si(111) substrate was hydrophobic, and the it-PMMA monolayers could be deposited as a multilayer, which could not be formed on hydrophilic mica. The crystallization behavior of an it-PMMA amorphous multilayer and an amorphous/crystalline mixed multilayer on the Si(111) substrate was also evaluated.
Keyphrases
  • atomic force microscopy
  • room temperature
  • high speed
  • amino acid
  • single molecule
  • structural basis
  • mass spectrometry
  • clinical trial
  • high resolution
  • aqueous solution