Hydroxyapatite-loaded macroporous calcium alginate hydrogels: Preparation, characterization, and in vitro evaluation.
Maria DrozdovaAlika MakhoninaDaria GladkikhAlexander A ArtyukhovLeonid BryukhanovYaroslav MezhuevVladimir LozinskyElena MarkvichevaPublished in: Biopolymers (2024)
Hydrogels from natural polysaccharides are of great interest for tissue engineering. This study aims (1) to prepare hydroxyapatite-loaded macroporous calcium alginate hydrogels by novel one-step technique using internal gelation in water-frozen solutions; (2) to evaluate their physicochemical properties; (3) to estimate their ability to support cell growth and proliferation in vitro. The structure of the hydrogel samples in a swollen state was studied by confocal laser scanning microscopy and was shown to represent a system of interconnected macropores with sizes of tens micron. The swelling behavior of the hydrogels, their mechanical properties (Young's moduli) in function of a hydroxyapatite content (5-30 mass%) were studied. All hydrogel samples loaded with hydroxyapatite were found to support growth and proliferation of mouse fibroblasts (L929) at long-term cultivation for 7 days. The obtained macroporous composite Ca-Alg-HA hydrogels could be promising for tissue engineering.