Login / Signup

A mathematical model of cerebral blood flow control in anaemia and hypoxia.

James DuffinGregory M T HareJoseph A Fisher
Published in: The Journal of physiology (2020)
A mathematical model is developed to examine the changes in the partial pressure of oxygen in brain tissue associated with changes in cerebral blood flow regulation produced by carbon dioxide, anaemia and hypoxia. The model simulation assesses the physiological plausibility of some currently hypothesized cerebral blood flow control mechanisms in hypoxia and anaemia, and also examines the impact of anaemia and hypoxia on brain hypoxia. In addition, carbon dioxide is examined for its impact on brain hypoxia in the context of concomitant changes associated with anaemia and hypoxia. The model calculations are based on a single compartment of brain tissue with constant metabolism and perfusion pressure, as well as previously developed equations describing oxygen and carbon dioxide carriage in blood. Experimental data are used to develop the control equations for cerebral blood flow regulation. The interactive model illustrates that there are clear interactions of anaemia, hypoxia and carbon dioxide in the determination of cerebral blood flow and brain tissue oxygen tension. In both anaemia and hypoxia, cerebral blood flow increases to maintain oxygen delivery, with brain hypoxia increasing when cerebral blood flow control mechanisms are impaired. Hypocapnia superimposes its effects, increasing brain hypoxia. Hypoxia, anaemia and hypocapnia, alone or in combination, produce varying degrees of cerebral hypoxia, and this effect is exacerbated when blood flow regulation is degraded by conditions that negatively impact cerebrovascular control. Differences in brain hypoxia in anaemia and hypoxia suggest that brain oxygen tension is not a plausible sensor for cerebral blood flow control.
Keyphrases