Login / Signup

Linking Experimental and Ab Initio Thermochemistry of Adsorbates with a Generalized Thermochemical Hierarchy.

Bjarne KreitzKento AbeywardaneC Franklin Goldsmith
Published in: Journal of chemical theory and computation (2023)
Enthalpies of formation of adsorbates are crucial parameters in the microkinetic modeling of heterogeneously catalyzed reactions since they quantify the stability of intermediates on the catalyst surface. This quantity is often computed using density functional theory (DFT), as more accurate methods are computationally still too expensive, which means that the derived enthalpies have a large uncertainty. In this study, we propose a new error cancellation method to compute the enthalpies of formation of adsorbates from DFT more accurately through a generalized connectivity-based hierarchy. The enthalpy of formation is determined through a hypothetical reaction that preserves atomistic and bonding environments. The method is applied to a data set of 60 adsorbates on Pt(111) with up to 4 heavy (non-hydrogen) atoms. Enthalpies of formation of the fragments required for the bond balancing reactions are based on experimental heats of adsorption for Pt(111). The comparison of enthalpies of formation derived from different DFT functionals using the isodesmic reactions shows that the effect of the functional is significantly reduced due to the error cancellation. Thus, the proposed methodology creates an interconnected thermochemical network of adsorbates that combines experimental with ab initio thermochemistry in a single and more accurate thermophysical database.
Keyphrases
  • density functional theory
  • molecular dynamics
  • high resolution
  • multiple sclerosis
  • room temperature
  • magnetic resonance imaging
  • ionic liquid
  • crystal structure