Development and Evaluation of CT-to-3D Ultrasound Image Registration Algorithm in Vertebral Phantoms for Spine Surgery.
Andrew ChanBrendan CouttsEric ParentEdmond H M LouPublished in: Annals of biomedical engineering (2020)
Posterior spinal fusion surgery requires careful insertion of screws into the spine to avoid neurologic injury. While current systems use CT-scans, three-dimensional ultrasound (3DUS) could provide guidance by reconstructing the vertebral surface, and then registering a pre-operative vertebral model to that surface for localization. The aim of this study was to evaluate the accuracy and processing time of a custom CT-3DUS registration algorithm. A phantom human vertebra was 3D-printed and scanned with a motion capture-based 3D ultrasound (3DUS) system. Image registration was performed that included a pre-alignment phase using vertebral symmetry information, and then comparing Gaussian pyramid intensity-based registration with iterative-closest-point registration for final transformations. Image registration was performed 192 times while surgical registration between CT and real-world position was performed 84 times. The accuracy of image registration (CT-to-3DUS) was 0.3 ± 0.2 mm and 0.9 ± 0.8° completed in 13.3 ± 2.9 s. The surgical navigation accuracy (CT model to real-world position) of the system was 1.2 ± 0.5 mm and 2.2 ± 2.0° completed in 16.2 ± 3.0 s. Both meet accuracy thresholds of < 2 mm and < 5° required for the surgery. A feasibility study on porcine spine qualitatively showed appropriate overlapping anatomy in CT-3DUS registrations. The usage of 3D ultrasound for navigation has demonstrated accuracy to provide radiation-free image guidance for spine surgery.
Keyphrases
- image quality
- dual energy
- computed tomography
- contrast enhanced
- deep learning
- magnetic resonance imaging
- positron emission tomography
- minimally invasive
- healthcare
- coronary artery bypass
- magnetic resonance
- spinal cord
- endothelial cells
- coronary artery disease
- high resolution
- acute coronary syndrome
- surgical site infection