Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N'-Dimethyl-piperazine-2,3-dithione/I2 Mixtures.
Angela SerpeLuca PiliaDavide BalestriLuciano MarchiòPaola DeplanoPublished in: Molecules (Basel, Switzerland) (2021)
In the context of new efficient and safe leaching agents for noble metals, this paper describes the capability of the Me2pipdt/I2 mixture (where Me2pipdt = N,N'-dimethyl-piperazine-2,3-dithione) in organic solutions to quantitatively dissolve Au, Pd, and Cu metal powders in mild conditions (room temperature and pressure) and short times (within 1 h in the reported conditions). A focus on the structural insights of the obtained coordination compounds is shown, namely [AuI2(Me2pipdt)]I3 (1), [Pd(Me2pipdt)2]I2 (2a) and [Cu(Me2pipdt)2]I3 (3), where the metals are found, respectively, in 3+, 2+ and 1+ oxidation states, and of [Cu(Me2pipdt)2]BF4 (4) and [Cu(Me2dazdt)2]I3 (5) (Me2dazdt = N,N'-dimethyl-perhydrodizepine-2,3-dithione) compared with 3. Au(III) and Pd(II) (d8 configuration) form square-planar complexes, whereas Cu(I) (d10) forms tetrahedral complexes. Density functional theory calculations performed on the cationic species of 1-5 help to highlight the nature of the bonding in the different complexes. Finally, the valorization of the noble metals-rich leachates is assessed. Specifically, gold metal is quantitatively recovered from the solution besides the ligands, showing the potential of these systems to promote metal recycling processes.