Highly Twisted Donor-Acceptor Boron Emitter and High Triplet Host Material for Highly Efficient Blue Thermally Activated Delayed Fluorescent Device.
Dae Hyun AhnHyuna LeeSi Woo KimDurai KarthikJungsub LeeHyein JeongJu Young LeeJang Hyuk KwonPublished in: ACS applied materials & interfaces (2019)
New highly efficient thermally activated delayed fluorescence (TADF) dopant materials (PXB-DI and PXB-mIC) for blue organic light-emitting diodes are reported. These materials were designed by combining highly conjugated rigid ring donor moieties and a boron acceptor with a highly twisted configuration to have high TADF performance and minimized self-quenching properties. In addition, a new high triplet energy and hole transport-type host material, 5-(5-(2,4,6-triiso-propylphenyl)pyridin-2-yl)-5 H-benzo[ d]benzo[4,5]imidazo[1,2- a]imidazole (PPBI), is also reported. This host represents deeper blue color owing to keeping the original spectra of emitters. A fabricated blue TADF device with PXB-mIC in the PPBI host exhibited maximum external quantum efficiency (EQE) of 12.5% with a CIE of (0.15, 0.08), which is close to that of the National Television System Committee blue color. The blue TADF device performances of the PPBI host was compared with the electron transport-type 2,8-bis(diphenylphosphine oxide)dibenzofuran (DBFPO) host. The blue TADF device with PXB-DI in the DBFPO host exhibited a maximum EQE of 37.4% in the sky blue region. This study demonstrates that our molecular design concept of new emitters and host is beneficial for future high-efficiency deep-blue TADF devices.