Lifespan effects of muscle-specific androgen receptor overexpression on body composition of male and female rats.
Sabrina Tzivia BarskyDouglas Ashley MonksPublished in: Endocrinology (2024)
Androgenic actions of gonadal testosterone are thought to be a major mechanism promoting sex differences in body composition across the lifespan. However, this inference is based on studies of androgen receptor (AR) function in late adolescent or emerging adult rodents. Here we assess body composition and AR expression in skeletal muscle of rats at defined ages, comparing wild-type (WT) to transgenic HSAAR rats which overexpress AR in skeletal muscle. Male and female HSAAR and WT Sprague Dawley rats (N = 288) underwent DXA scanning and tissue collection at post-natal day (PND) 1, 10, 21, 42, 70, 183, 243, and 365. Expected sex differences in body composition and muscle mass largely onset with puberty (PND-21), with no associated changes to skeletal muscle AR protein. In adulthood, HSAAR increased tibialis anterior (TA) and extensor digitorum longus mass in males, and reduced the expected gain in gonadal fat mass in both sexes. In WT rats, AR protein was reduced in soleus, but not TA, throughout life. Nonetheless, soleus AR protein expression was greater in males than females at all ages of sexual development, yet only at PND-70 in TA. Overall, despite muscle AR overexpression effects, results are inconsistent with major sex differences in body composition during sexual development being driven by changes in muscle AR, rather suggesting that changes in ligand promote sexual differentiation of body composition during pubertal timing. Nonetheless, increased skeletal muscle AR in adulthood can be sufficient to increase muscle mass in males, and reduce adipose in both sexes.