Probing the high performance of photoinduced birefringence in V-shaped azo/PMMA guest-host films.
Lidiana M SilvaDaniel L SilvaMariana V BoasYann BretonniereChantal AndraudMarcelo Gonçalves VivasPublished in: RSC advances (2020)
Optical birefringence in polymeric films containing azo-chromophores is an important feature related to the development of several technologies such as electro-optic modulators, optical switching, and optical gates, to cite a few. Therefore, it is essential to understand the main underlying mechanisms describing dynamic switching. In this context, we have investigated the optical birefringence performance of a guest-host film produced from a poly(methyl methacrylate) (PMMA) matrix containing a V-shaped azo-chromophore, which exhibited a larger optical response in comparison to the linear chromophores. The optical birefringence was induced by a linearly polarized diode laser (532 nm, writing laser), while a low-intensity HeNe (632.8 nm) laser and a tungsten-halogen lamp are employed, respectively, to monitor the optical storage and the absorption change during the photoinduced birefringence. Our results pointed out that the guest-host film presents maximum residual optical memory at around 50% and local optical birefringence at around 3.3 × 10 -4 in the low concentration and intensity regimes. The high optical birefringence obtained in guest-host films was attributed to the considerable photoisomerization quantum yield in the solid-state (0.15 ± 0.02 for 532 nm). Besides, we have shown that the switching mechanism is driven by angular hole-burning during the first seconds after excitation, and, subsequently, molecular reorientation quickly rises, dominating the photochemical process. The latter mechanism is highly efficient in converting cis to trans molecules (100%), which is responsible for the high residual optical memory obtained. In order to better understand the isomerization mechanism of the azo-chromophore/PMMA film, we performed quantum chemical calculations within the DFT framework. The electronic transitions of the azo-chromophore isomers were determined using the TD-DFT method and potential energy curves (PECs) were constructed to investigate the possibility of the thermal-isomerization process of the V-shaped azo-chromophore through both rotation and inversion mechanisms. For both mechanisms, the amplitude of the energy barrier and activation energy for thermal isomerization are determined and the results are discussed.
Keyphrases
- high speed
- high resolution
- atomic force microscopy
- room temperature
- highly efficient
- drug delivery
- working memory
- small molecule
- photodynamic therapy
- gold nanoparticles
- risk assessment
- molecular dynamics simulations
- density functional theory
- mass spectrometry
- wastewater treatment
- climate change
- water soluble
- clinical evaluation