Login / Signup

Iron-Gold Composites for Biodegradable Implants: In Vitro Investigation on Biodegradation and Biomineralization.

V P Muhammad RabeehShebeer A RahimSijina Kinattingara ParambathRajanikant Golgodu KrishnamurthyHanas Tharayil
Published in: ACS biomaterials science & engineering (2023)
The biocompatibility and biodegradation of iron (Fe) make it a suitable candidate for developing biodegradable metallic implants. However, the degradation rate of Fe in a physiological environment is extremely slow and needs to be enhanced to a rate compatible with tissue growth. Incorporating noble metals improves the Fe degradation rate by forming galvanic couples. This study incorporated gold (Au) into Fe at very low concentrations of 1.25 and 2.37 μg/g to improve the degradation rate. The electrochemical corrosion test of the samples revealed that the Au-containing samples showed a four-time and nine-time faster degradation rate than pure Fe. Furthermore, the immersion test and long-term electrochemical impedance spectroscopy conducted in simulated body fluid (SBF) revealed that the Au-incorporated samples exhibited increased bioactivity and degraded faster than pure Fe. Integrating nanogold into a Fe matrix increased the in situ formation of hydroxyapatite on the sample's surface and did not cause toxicity to L929-murine fibroblast cells. It is suggested that Fe-Au composites with low concentrations of Au can be used to tailor the biodegradation rate and promote the biomineralization of Fe-based implants in the physiological environment.
Keyphrases