CO Stretch Vibration Lives Long on Au(111).
Ivor LončarićM AlducinJ I JuaristiDino NovkoPublished in: The journal of physical chemistry letters (2019)
Measured lifetimes of the CO internal stretch mode on various metal surfaces routinely lie in the picosecond regime. These short vibrational lifetimes, which are actually reproduced by current first-principles nonadiabatic calculations, are attributed to the rapid vibrational energy loss that is caused by the facile excitation of electron-hole pairs in metals. However, this explanation was recently questioned by the huge discrepancy that exists for CO on Au(111) between the experimental vibrational lifetime that is larger than 100 ps and the previous theoretical predictions of 4.8 and 1.6 ps. Here, we show that the state-of-the-art nonadiabatic theory does reproduce the long CO lifetime measured in Au(111) provided the molecule-surface interaction is properly described. Importantly, our new results confirm that the current understanding of the adsorbates' vibrational relaxation at metal surfaces is indeed valid.