Login / Signup

Evaluation of the combined effects of different dose levels of Zinc oxide with probiotics complex supplementation on the growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs.

Huan WangKun Phil KimIn-Ho Kim
Published in: Journal of animal physiology and animal nutrition (2021)
This study was conducted to assess the effects of different dose levels of zinc oxide (ZnO) combined with probiotics complex supplementation on the growth, performance, nutrient digestibility, faecal lactobacillus and Enterobacteria counts, noxious gas emissions and faecal score of weaned piglets. A total of 180 crossbred weaning pigs ([Yorkshire × Landrace] × Duroc; 6.61 ± 1.29 kg [mean ± SE]; 28 days old) were used in a 42-day trial. All pigs were randomly allotted to 1 of 4 treatment diets based on initial BW and sex (9 replicate pens/treatment; 2 gilts and 3 barrows/pen). Dietary treatment groups were as follows: CON, basal diet +ZnO 3,000 ppm; BZS, basal diet +ZnO 2,100 ppm +0.1% SynerZymeF10; BZS1, basal diet +ZnO 1,200 ppm +0.1% SynerZymeF10; BZS2, basal diet +ZnO 300 ppm +0.1% SynerZymeF10. During the phase 3, decreasing the ZnO concentration led to a linear reduction in ADG (p = 0.044), and the ADG was lower (p < 0.05) in BZS2 compared with CON treatment during the whole experimental period. The effects of dietary ZnO with probiotics complex were not detected (p > 0.05) on nutrient digestibility, Lactobacillus and E. coli counts, faecal gas emissions and faecal scores. In conclusion, the diet supplementation of ZnO (1,200 ppm) with probiotics complex has been shown to have comparable efficacy to ZnO (3,000 ppm) diet on growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs.
Keyphrases