Login / Signup

Highly active neurons emerging in vitro.

Mami OkadaRena KonoYu SatoChiaki KobayashiRyuta KoyamaYuji Ikegaya
Published in: Journal of neurophysiology (2021)
Mean firing rates vary across neurons in a neuronal network. Although most neurons infrequently emit spikes, a small fraction of neurons exhibit extremely high frequencies of spikes; this fraction of neurons plays a pivotal role in information processing, however, little is known about how these outliers emerge and whether they are maintained over time. In primary cultures of mouse hippocampal neurons, we traced highly active neurons every 24 h for 7 wk by optically observing the fluorescent protein dVenus; the expression of dVenus was controlled by the promoter of Arc, an immediate early gene that is induced by neuronal activity. Under default-mode conditions, 0.3%-0.4% of neurons were spontaneously Arc-dVenus positive, exhibiting high firing rates. These neurons were spatially clustered, exhibited intermittently repeated dVenus expression, and often continued to express Arc-dVenus for approximately 2 wk. Thus, highly active neurons constitute a few select functional subpopulations in the neuronal network.NEW & NOTEWORTHY The overdispersion of neuronal activity levels can often be attributed to very few neurons exhibiting extremely high firing rates, but due to technical difficulty, no studies have examined how these outliers are selected during development and whether they are maintained over time. We optically monitored highly active neurons for as long as 7 wk in vitro and found that they constituted a unique population that was different from other "mediocre" neurons with normal firing rates.
Keyphrases
  • spinal cord
  • gene expression
  • transcription factor
  • long non coding rna
  • small molecule
  • quantum dots
  • subarachnoid hemorrhage
  • health information
  • single molecule
  • amino acid