Login / Signup

Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework.

Evandro CastaldelliK D G Imalka JayawardenaDavid C CoxGuy J ClarksonRichard I WaltonLong Le-QuangJerôme ChauvinS Ravi P SilvaGrégoire Jean-François Demets
Published in: Nature communications (2017)
Metal-organic frameworks (MOFs) have emerged as an exciting class of porous materials that can be structurally designed by choosing particular components according to desired applications. Despite the wide interest in and many potential applications of MOFs, such as in gas storage, catalysis, sensing and drug delivery, electrical semiconductivity and its control is still rare. The use and fabrication of electronic devices with MOF-based components has not been widely explored, despite significant progress of these components made in recent years. Here we report the synthesis and properties of a new highly crystalline, electrochemically active, cobalt and naphthalene diimide-based MOF that is an efficient electrical semiconductor and has a broad absorption spectrum, from 300 to 2500 nm. Its semiconductivity was determined by direct voltage bias using a four-point device, and it features a wavelength dependant photoconductive-photoresistive dual behaviour, with a very high responsivity of 2.5 × 105 A W-1.
Keyphrases
  • metal organic framework
  • room temperature
  • drug delivery
  • photodynamic therapy
  • cancer therapy
  • gold nanoparticles
  • ionic liquid
  • drug release
  • visible light