Continuous transition of colloidal crystals through stable random orders.
Juhong AhnLiwen ChenPatrick T UnderhillGuillaume FreychetMikhail ZhernenkovSangwoo LeePublished in: Soft matter (2023)
Randomly stacked 2D hexagonal close-packed (RHCP) layer structures are frequently observed in colloids and other material systems but are considered metastable. We report a stable RHCP phase domain of poly(butadiene- b -ethylene oxide) (PB-PEO) diblock copolymer micellar colloids in water. The stable RHCP colloidal crystals emerge in the middle of a continuously transiting phase domain of close-packed PB-PEO colloids from a face-centered cubic (FCC) polytype to a HCP polytype. We attribute the stability of RHCP structures to two competing contributions, entropic preference for FCC lattices and long PEO corona chains stabilizing HCP lattices. When these two contributions become comparable in the phase space, thermal fluctuation randomizes the stacking order of the 2D-HCP layers, and RHCP orders are stabilized. The continuously transiting close-packed structures of PB-PEO colloids with stable RHCP states suggest that similar structural transitions and equivalent RHCP states may occur in other polytypic crystal systems because polytypic crystals have the common crystal construction rule, i.e. , stacking 2D-HCP lattice layer groups in different orders.