Dynamic structure factors of polymer melts as observed by neutron spin echo: Direct comparison and reevaluation.
Michael MonkenbuschMargarita KrutevaDieter RichterPublished in: The Journal of chemical physics (2023)
In this work, we compare the single chain dynamic structure factors for five different polymers: polyolefins (PE and PEP), poly-dienes (PB and PI), and a polyether (PEO). For this purpose, we have extended the De Gennes approximation for the dynamic structure factor. We describe the single chain dynamic structure factor in multiplying the coherent scattering functions for local reptation and Rouse motion within the Rouse blob. Important results are (i) the simple De Gennes structure factor S(Q, t)DG approximates within a few Å the outcome for the tube diameter of the more elaborate structure factor (exception PI); (ii) the extended De Gennes structure factor together with the Rouse blob describes the neutron spin echo spectra from the different polymers over the complete momentum transfer range and the full time regime from early Rouse motion to local reptation; and (iii) the representation of the scattering functions could significantly be improved by introducing non-Gaussianity corrections to the Rouse-blob dynamics. (iv) The microscopic tube step length in all cases is significantly larger than the rheological one; further tweaking the relation between tube length and entanglement blob size may indicate a possible trend toward an anisotropic lean tube with a step-length larger than the lateral extension. (v) All considered polymer data coincide after proper (Q, t) scaling to a universal behavior according to the length scale of the tube, while the relevant time scale is the entanglement time τe. (vi) In terms of the packing model, the required number of chains spanning the entanglement volume consistently is about 40% larger than that obtained from rheology.