Login / Signup

A novel insecticide, isocycloseram, shows promise as an alternative to chlorpyrifos against a direct pest of peanut, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae).

Kyle M BekeljaSean MaloneVictor MascarenhasSally V Taylor
Published in: Journal of economic entomology (2024)
Larvae of the southern corn rootworm (SCR) Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae) are primary pests of peanut in the Virginia-Carolina region of the United States, and are relatively sporadic pests in southern states such as Georgia, Alabama, and Florida. Peanuts have strict quality standards which, when they are not met, can diminish crop value by more than 65%. Management of direct pests like SCR is therefore crucial to maintaining the economic viability of the crop. The soil-dwelling nature of SCR larvae complicates management due to difficulties associated with monitoring and predicting infestations. Nonchemical management options are limited in this system; preventative insecticide applications are the most reliable management strategy for at-risk fields. Chlorpyrifos was the standard product for larval SCR management in peanut until its registration was revoked in 2022, leaving no effective chemical management option for larvae. We tested a novel insecticide, isocycloseram, for its ability to reduce pod scarring, pod penetration, and non-SCR pod damage in field studies conducted in Suffolk, Virginia in 2020-2022. Overall injury was low in 2020 and 2022, and in 2022 there was not a significant effect of treatment. In 2021, 2 simulated chemigation applications of isocycloseram in July significantly reduced pod scarring and overall pod injury relative to chlorpyrifos and the untreated control. Our results suggest that isocycloseram may become an effective option for managing SCR in peanut, although more work is needed to understand the mechanisms by which it is effective as a soil-applied insecticide.
Keyphrases
  • aedes aegypti
  • climate change
  • machine learning
  • zika virus
  • oxidative stress