Distinct functions of TMC channels: a comparative overview.
Xiaomin YueYi ShengLijun KangRui XiaoPublished in: Cellular and molecular life sciences : CMLS (2019)
In the past two decades, transmembrane channel-like (TMC) proteins have attracted a significant amount of research interest, because mutations of Tmc1 lead to hereditary deafness. As evolutionarily conserved membrane proteins, TMC proteins are widely involved in diverse sensorimotor functions of many species, such as hearing, chemosensation, egg laying, and food texture detection. Interestingly, recent structural and physiological studies suggest that TMC channels may share a similar membrane topology with the Ca2+-activated Cl- channel TMEM16 and the mechanically activated OSCA1.2/TMEM63 channel. Namely, these channels form dimers and each subunit consists of ten transmembrane segments. Despite this important structural insight, a key question remains: what is the gating mechanism of TMC channels? The major technical hurdle to answer this question is that the reconstitution of TMC proteins as functional ion channels has been challenging in mammalian heterologous systems. Since TMC channels are conserved across taxa, genetic studies of TMC channels in model organisms such as C. elegans, Drosophila, and zebrafish may provide us critical information on the physiological function and regulation of TMCs. Here, we present a comparative overview on the diverse functions of TMC channels in different species.