Login / Signup

Olfactory receptor neurons are sensitive to stimulus onset asynchrony: Implications for odour source discrimination.

Georg RaiserC Giovanni GaliziaPaul Szyszka
Published in: Chemical senses (2024)
In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit non-synaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odour source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odour stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odour source discrimination.
Keyphrases
  • spinal cord
  • spinal cord injury
  • drinking water
  • drosophila melanogaster
  • blood brain barrier
  • subarachnoid hemorrhage