Enhancing Conductivity in Silicon Heterojunction Solar Cells with Silver Nanowire-Assisted Ti 3 C 2 T x MXene Electrodes for Cost-Effective and Scalable Photovoltaics.
Wei LiZhiyuan XuYu YanQianfeng GaoYaya SongJing WangMaobin ZhangJunming XueShengzhi XuYi DingXinliang ChenXiyan LiLiping ZhangQian HuangWenzhu LiuXiaodan ZhangYing ZhaoGuofu HouPublished in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti 3 C 2 T x MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm 2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm 2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.