Login / Signup

Rheological Properties of Aqueous Sodium Alginate Slurries for LTO Battery Electrodes.

Christina ToigoMilan KracalikElke BradtKarl-Heinz PettingerCatia Arbizzani
Published in: Polymers (2021)
Rheological properties of electrode slurries have been intensively studied for manifold different combinations of active materials and binders. Standardly, solvent-based systems are under use, but a trend towards water-based electrode manufacturing is becoming more and more important. The different solvent is beneficial in terms of sustainability and process safety but is also accompanied by some disadvantages such as extraction of residual humidity and a higher complexity concerning slurry stability. Li4Ti5O12 (LTO) active material provides good long-term stability and can be processed in aqueous solutions. Combining the LTO active material with sodium alginate (SA) as a promising biobased polymer binder reveals good electrochemical properties but suffers from bad slurry stability. In this work, we present a comprehensive rheological study on material interactions in anode slurries consisting of LTO and SA, based on a complex interaction of differentially sized materials. The use of two different surfactants-namely, an anionic and non-ionic one, to enhance slurry stability, compared with surfactant-free slurry.
Keyphrases
  • solid state
  • ionic liquid
  • gold nanoparticles
  • carbon nanotubes
  • ion batteries
  • reduced graphene oxide
  • wound healing
  • high resolution
  • molecularly imprinted
  • label free
  • high temperature