Login / Signup

Hemato-biochemical alteration in the bronze featherback Notopterus notopterus (Pallas, 1769) as a biomonitoring tool to assess riverine pollution and ecology: a case study from the middle and lower stretch of river Ganga.

Nitish Kumar TiwariTrupti Rani MohantySubhadeep Das GuptaShreya RoyHimanshu Sekhar SwainRaju BaithaMitesh Hiradas RamtekeBasanta Kumar Das
Published in: Environmental science and pollution research international (2023)
Fishes are poikilothermic animals and are rapid responders to any sort of ecological alteration. The responses in the fish can be easily assessed from their hematological and biochemical responses. To study the variation in the hemato-biochemical parameters in retort to ecological alteration and ecological regime, a study was conducted at six different sampling stations of the middle and lower stretches of river Ganga. Various hematological and biochemical responses of fishes were also monitored in response to multiple ecological alterations. For the assessment of ecological alteration, various indices were calculated such as the water pollution index (WPI), National Sanitation Foundation-water quality index (NSF-WQI), and Nemerow's pollution index (NPI) has been calculated based on various water quality parameters such as dissolved oxygen (DO), pH, total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), electrical conductivity (EC), biochemical oxygen demand (BOD), chlorinity (CL), total nitrogen (TN), and total phosphorus (TP). The hematological parameters such as WBC, RBC, platelet, hemoglobin, and hematocrit were monitored. The serum biochemical parameters such as SGPT, SGOT, ALP, amylase, bilirubin, glucose, triglyceride (TRIG), and cholesterol (CHOL) were investigated. The study revealed that NSF-WQI varied from 45.08 at Buxar to 110.63 at Rejinagar and showed a significantly positive correlation with SGPT, SGOT, ALP, TRIG, CHOL, and WBC, whereas a significantly negative correlation was observed between TRIG and RBC. WPI varied from 19 to 23 and showed a significant positive correlation with SGOT and a negative correlation was observed with total nitrogen. The PCA analysis illustrated the significance of both natural as well as anthropogenic factors on riverine ecology. Strong positive loading was observed with SGPT, SGOT, ALP, and platelet. The study signified the need for monitoring the hemato-biochemical responses of fishes in response to alterations in the ecological regime.
Keyphrases
  • water quality
  • human health
  • climate change
  • risk assessment
  • heavy metals
  • red blood cell
  • mass spectrometry
  • quality improvement
  • blood pressure
  • air pollution
  • quantum dots
  • sewage sludge