2D Rare Earth Material (EuOCl) with Ultra-Narrow Photoluminescence at Room Temperature.
Ping ChenZexin LiDongyan LiLejing PiXitao LiuJunhua LuoXing ZhouTianyou ZhaiPublished in: Small (Weinheim an der Bergstrasse, Germany) (2021)
High color purity and color rendition of 2D luminescent materials have long been pursued for applications in low-dimensional lighting, display, biolabeling, and laser. However, the reported photoluminescence (PL) linewidth of most 2D luminescent materials is about dozens of meV. Herein, a brand-new luminescent system of 2D rare earth (RE) material EuOCl (1.1 nm) with ultra-narrow linewidth (1.2 meV) at room temperature is successfully synthesized via chemical vapor deposition (CVD). The linewidth of EuOCl flakes at room temperature is even narrower than most 2D luminescent materials and heterostructures detected at below 10 K. Impressively, the as-synthesized EuOCl flakes show abnormal temperature-dependent photoluminescent properties, which is absolutely different from the relatively stable 4f-4f transitions in RE owing to shielding from outer shell electrons. J-mixing effect has been successfully applied for this phenomenon. Undoubtedly, luminescent 2D EuOCl flakes will open new territory for the applications of 2D RE materials in the 2D luminescent areas, especially for the applications at room temperature.