Login / Signup

Anomalous Octahedron Distortion of Bi-Alloyed Cs2AgInCl6 Crystal via XRD, Raman, Huang-Rhys Factor, and Photoluminescence.

Hassan SiddiqueZilong XuXiangdong LiSara SaeedWentao LiangXiangqi WangChan GaoRucheng DaiZhongping WangZeng Ming Zhang
Published in: The journal of physical chemistry letters (2020)
The refinement of XRD patterns only provides the average structure parameters for the alloying materials because of the symmetric protection. Raman vibrational modes can append the detailed information about the bond length and structure. The refinements of XRD patterns for Bi alloying Cs2AgInCl6 revealed the strong structure distortion with the enlarged octahedron of In(Bi)Cl6 and the contracted octahedron of AgCl6 with the increasing Bi. Raman spectra supported the expanded octahedron of InCl6 and the reduced octahedron of AgCl6 but identified the anomalous shortening bond length of Bi-Cl with the increasing Bi. These distorting octahedrons break parity forbidden transition, modify Huang-Rhys factor, and result in the maximum values at 30% Bi alloying and the same variation trend for both photoluminescence and Huang-Rhys factor with the increasing Bi alloying.
Keyphrases
  • healthcare
  • energy transfer
  • molecular dynamics simulations
  • transition metal
  • light emitting