Elaborate Design of Ag8Au10 Cluster [2]Catenane Phosphors for High-Efficiency Light-Emitting Devices.
Ya-Zi HuangLin-Xi ShiJin-Yun WangHai-Feng SuZhong-Ning ChenPublished in: ACS applied materials & interfaces (2020)
In this work, rational design of highly soluble and phosphorescent Ag-Au cluster complexes with exceptional [2]catenane structures is conducted using 1,8-diethynyl-9H-carbazole (H3decz) as a rigid U-shaped ligand with a distinguished hole-transport character. The self-assembly reaction of H3decz, Au+, and Ag+ generated phosphorescent Ag4Au6 cluster 1 (Φem = 0.22 in CH2Cl2) with H2decz- having a free ethynyl (-C≡CH) group. When the four free C≡CH groups in the Ag4Au6 complex 1 are further bound to four (PPh3)Au+ and four (PPh3)Ag+ moieties through M-acetylide linkages, the formation of Ag8Au10 cluster 2 not only eliminates nonradiative ethynyl C-H vibrational deactivation process but also improves dramatically the molecular rigidity so that the phosphorescent efficiency of the Ag8Au10 cluster 2 (Φem = 0.63) is nearly 3 times that of the Ag4Au6 cluster 1. The Ag8Au10 cluster structure is further rigidified using diphsophine Ph2P(CH2)4PPh2 (dppb) in place of PPh3 so that the phosphorescence of the Ag8Au10 cluster 3 (Φem = 0.77) is more efficient than that of 2. Making use of the Ag8Au10 clusters as phosphorescent dopants, high-efficiency solution-processed organic light-emitting diodes (OLEDs) were achieved with current efficiency (CE) and external quantum efficiency (EQE) of 47.2 cd A-1 and 15.7% for complex 2 and 50.5 cd A-1 and 14.9% for complex 3.