Login / Signup

Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite-Barium strontium titanate composites with controlled strontium substitution.

Subhasmita SwainChris BowenTapash Ranjan Rautray
Published in: Journal of biomedical materials research. Part A (2021)
To mimic the electrical properties of natural bone, controlled strontium substitution of both hydroxyapatite and ferroelectric barium titanate were achieved by mixing in the ratio 30:70 by weight. The composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy to investigate the phase composition and microstructure of the composites. Unpolarized and polarized strontium hydroxyapatite (SrHA)-barium strontium titanate (BST) composites with controlled degree of Sr substitution were examined, including 5SrHA-5BST (5% Sr substitution in both components) and 10SrHA-10BST composites. The 10SrHA-10BST composite showed a higher osteoblast activity, as observed from the cell viability studies performed using CCK-8 assay. The polarized composites showed promise against Staphylococcus aureus bacteria by minimizing the adhesion and growth of bacteria, as compared with their unpolarized counterparts. The polarized 10SrHA-10BST was found to be superior than all other composites. As a result, the approach of polarization of SrHA-BST composites has been found to be an effective bone substitute material in controlled enhancement of osteoblast growth with simultaneous reduction of bacterial infection.
Keyphrases