Login / Signup

Achieving High-Performance Photothermal and Photodynamic Effects upon Combining D-A Structure and Nonplanar Conformation.

Jingya ChenKaikai WenHao ChenSai JiangXiaoxi WuLei LvAidong PengShiming ZhangHui Huang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Various organic nanoagents have been developed for photothermal therapy (PTT) and photodynamic therapy (PDT) under near-infrared (NIR) irradiation. Among them, small molecule-based nanoagents are very attractive due to their advantages of well-defined chemical structures, high purity, good reproducibility, and easy processability. However, only a few small molecule-based nanoagents have been developed for PDT under NIR irradiation. Moreover, the mechanism of PDT under NIR is still elusive. Herein, a semiconducting small molecule (BTA) with donor-acceptor-donor structure and twisted conformation is developed for PDT/PTT under NIR irradiation. A large π-conjugated electron-deficient unit is used as the core to couple with two electron-donating units, ensuring the strong absorption under 808 nm. Moreover, the donor-acceptor structures and twisted conformation can reduce the energy gap between the singlet and triplet states (∆EST ) to afford effective intersystem crossing, beneficial for reactive oxygen species generation. The mechanism is probed by experimental and theoretical evidence. Moreover, the BTA nanoparticles exhibit excellent biocompatibility and PTT/PDT in vitro performance under NIR irradiation. This provides a strategy for designing highly efficient PDT/PTT molecular materials.
Keyphrases