Login / Signup

Assembling Polyiodides and Iodobismuthates Using a Template Effect of a Cyclic Diammonium Cation and Formation of a Low-Gap Hybrid Iodobismuthate with High Thermal Stability.

Tatiana A ShestimerovaAndrei V MironovMikhail A BykovAnastasija V GrigorievaZheng WeiEvgeny V DikarevAndrei V Shevelkov
Published in: Molecules (Basel, Switzerland) (2020)
Exploiting a template effect of 1,4-diazacycloheptane (also known as homopiperazine, Hpipe), four new hybrid iodides, (HpipeH2)2Bi2I10·2H2O, (HpipeH2)I(I3), (HpipeH2)3I6·H2O, and (HpipeH2)3(H3O)I7, were prepared and their crystal structures were solved using single crystal X-ray diffraction data. All four solid-state crystal structures feature the HpipeH22+ cation alternating with Bi2I104-, I3-, or I- anions and solvent water or H3O+ cation. HpipeH22+ assembles anionic and neutral building blocks into polymer structures by forming four strong (N)H···I and (N)H···O hydrogen bonds per cation, with the H···I distances ranging from 2.44 to 2.93 Å and H···O distances of 1.88-1.89 Å. These hydrogen bonds strongly affect the properties of compounds; in particular, in the case of (HpipeH2)2Bi2I10·2H2O, they ensure narrowing of the band gap down to 1.8 eV and provide high thermal stability up to 240 °C, remarkable for a hydrated molecular solid.
Keyphrases