Metasurface Spiral Focusing Generators with Tunable Orbital Angular Momentum Based on Slab Silicon Nitride Waveguide and Vanadium Dioxide (VO2).
Li ChenLin ZhaoYuan HaoWenyi LiuYi WuZhongchao WeiNing XuShuai QinXiangbo YangHongzhan LiuPublished in: Nanomaterials (Basel, Switzerland) (2020)
The metasurface spiral focusing (MSF) generator has gained attention in high-speed optical communications due to its spatial orthogonality. However, previous MSF generators only can generate a single orbital angular momentum (OAM) mode for one polarized light. Here, a MSF generator with tunable OAM is proposed and it has the ability to transform linearly polarized light (LPL), circularly polarized light or Gaussian beams into vortex beams which can carry tunable OAM at near-infrared wavelength by controlling the phase transition of vanadium dioxide (VO2). Utilizing this MSF generator, the beams can be focused on several wavelength-sized rings with efficiency as high as 76%, 32% when VO2 are in the insulating phase and in the metallic phase, respectively. Moreover, we reveal the relationship between the reflective focal length and transmissive focal length, and the latter is 2.3 times of the former. We further demonstrate the impact of Gaussian beams with different waist sizes on MSF generators: the increase in waist size produces the enhancement in spiral focusing efficiency and the decrease in size of focal ring. The MSF generator we proposed will be applicable to a variety of integrated compact optical systems, such as optical communication systems and optical trapping systems.