Three-dimensional High-Resolution Dark-Blood Late Gadolinium Enhancement Imaging for Improved Atrial Scar Evaluation.
Dongyue SiYanfang WuJingjing XiaoXiaohan QinRui GuoBowei LiuZihan NingJie YinPeng GaoYongtai LiuDeyan YangKangan ChengTaibo ChenZhongwei ChengXue LinQuan FangDaniel A HerzkaHaiyan DingPublished in: Radiology (2023)
Background Radiofrequency ablation (RFA) is a widely used treatment for atrial fibrillation, reducing the risk of cardiac arrhythmia. Detailed visualization and quantification of atrial scarring has the potential to improve preprocedural decision-making and postprocedural prognosis. Conventional bright-blood late gadolinium enhancement (LGE) MRI can help detect atrial scars; however, its suboptimal myocardium to blood contrast inhibits accurate scar estimation. Purpose To develop and test a free-breathing LGE cardiac MRI approach that simultaneously provides high-spatial-resolution dark-blood and bright-blood images for improved atrial scar detection and quantification. Materials and Methods A free-breathing, independent navigator-gated, dark-blood phase-sensitive inversion recovery (PSIR) sequence with whole-heart coverage was developed. Two coregistered high-spatial-resolution (1.25 × 1.25 × 3 mm 3 ) three-dimensional (3D) volumes were acquired in an interleaved manner. The first volume combined inversion recovery and T2 preparation to achieve dark-blood imaging. The second volume functioned as the reference for phase-sensitive reconstruction with built-in T2 preparation for improved bright-blood contrast. The proposed sequence was tested in prospectively enrolled participants who had undergone RFA for atrial fibrillation (mean time since RFA, 89 days ± 26 [SD]) from October 2019 to October 2021. Image contrast was compared with conventional 3D bright-blood PSIR images using the relative signal intensity difference. Furthermore, native scar area quantification obtained from both imaging approaches was compared with measurements obtained with electroanatomic mapping (EAM) as the reference standard. Results A total of 20 participants (mean age, 62 years ± 9; 16 male) who underwent RFA for atrial fibrillation were included. The proposed PSIR sequence successfully acquired 3D high-spatial-resolution volumes in all participants, with a mean scan time of 8.3 minutes ± 2.4. The developed PSIR sequence improved scar to blood contrast compared with conventional PSIR sequence (mean contrast, 0.60 arbitrary units [au] ± 0.18 vs 0.20 au ± 0.19, respectively; P < .01) and correlated with EAM regarding scar area quantification ( r = 0.66 [ P < .01] vs r = 0.13 [ P = .63]). Conclusion In participants who had undergone RFA for atrial fibrillation, an independent navigator-gated dark-blood PSIR sequence produced high-spatial-resolution dark-blood and bright-blood images with improved image contrast and native scar quantification compared with conventional bright-blood images. © RSNA, 2023 Supplemental material is available for this article.
Keyphrases
- atrial fibrillation
- high resolution
- radiofrequency ablation
- contrast enhanced
- deep learning
- heart failure
- decision making
- optical coherence tomography
- risk assessment
- healthcare
- single molecule
- amino acid
- convolutional neural network
- left atrial appendage
- simultaneous determination
- reduced graphene oxide
- direct oral anticoagulants
- fluorescence imaging
- gold nanoparticles