Radical chemistry of dissolved black carbon under sunlight irradiation: quantum yield prediction and effects on sulfadiazine photodegradation.
Yina TuHuaying LiuYingjie LiZhiyu ZhangYajie LeiQun ZhaoSenlin TianPublished in: Environmental science and pollution research international (2021)
Dissolved black carbon (DBC) is regarded as an important part of the natural organic matter pool. However, it is unclear about DBC's photochemical activity and the relationships between reactive intermediates (RIs) and the molecular structure of DBC remain unclear. In this study, we investigate the photochemical formation ability of RIs and spectral parameters (E2/E3, S275-295) of DBC made from five types of plants at five pyrolysis temperatures. The results showed that there were good linear regressions between the RI quantum yields and the spectral parameters (E2/E3, S275-295), and this was indicative of the RI generation prediction from DBC under solar irradiation. The DBC-mediated photochemical experiment of sulfadiazine revealed that 3DBC* was the primary active species for the indirect photodegradation of sulfadiazine. Further studies indicated that a linear relationship was observed between the indirect photodegradation ability of sulfadiazine induced directly by 3DBC* at different pyrolysis temperatures and the 3DBC* quantum yields or E2/E3. These findings indicate that the simple models of the RI quantum yield as a function of spectral parameters can be used to evaluate the degradation of pollutants with known DBC spectral parameters.