Login / Signup

Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties.

Lixian TianEsther MartineXi YuWenping Hu
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
We studied the structure and transport properties of aromatic amine self-assembled monolayers (NH2-SAMs) on an Au surface. The oligophenylene and oligoacene amines with variable lengths can form a densely packed and uniform monolayer under proper assembly conditions. Molecular junctions incorporating an eutectic Ga-In (EGaIn) top electrode were used to characterize the charge transport properties of the amine monolayer. The current density J of the junction decreases exponentially with the molecular length (d), as J = J0 exp(-βd), which is a sign of tunneling transport, with indistinguishable values of J0 and β for NH2-SAMs of oligophenylene and oligoacene, indicating a similar molecule-electrode contact and tunneling barrier for two groups of molecules. Compared with the oligophenylene and oligoacene molecules with thiol (SH) as the anchor group, a similar β value (∼0.35 Å-1) of the aromatic NH2-SAM suggests a similar tunneling barrier, while a lower (by 2 orders of magnitude) injection current J0 is attributed to lower electronic coupling Γ of the amine group with the electrode. These observations are further supported by single-level tunneling model fitting. Our study here demonstrates the NH2-SAMs can work as an effective active layer for molecular junctions, and provide key physical parameters for the charge transport, paving the road for their applications in functional devices.
Keyphrases
  • room temperature
  • single molecule
  • amino acid
  • mental health
  • carbon nanotubes
  • physical activity
  • solid state
  • sensitive detection
  • quantum dots
  • gold nanoparticles
  • metal organic framework