Alternating Sequence Control for Carboxylic Acid and Hydroxy Pendant Groups by Controlled Radical Cyclopolymerization of a Divinyl Monomer Carrying a Cleavable Spacer.
Makoto OuchiMarina NakanoTomoya NakanishiMitsuo SawamotoPublished in: Angewandte Chemie (International ed. in English) (2016)
By utilizing features of the hemiacetal ester (HAE) bond: easy formation from vinyl ether and carboxylic acid and easy cleavage into different functional groups (-COOH and -OH), we achieved control of the alternating sequence of two functional pendant groups of a vinyl copolymer. Methacrylate- and acrylate-based vinyl groups were connected through HAE bonds to prepare a cleavable divinyl monomer, which was cyclo-polymerized under optimized conditions in a ruthenium-catalyzed living radical polymerization. Subsequent cleavage of the HAE bonds in the resultant cyclo-pendant led to a copolymer consisting of alternating methacrylic acid and 2-hydroxyethyl acrylate units as analyzed by 13 C NMR spectroscopy. The alternating sequence of -COOH and -OH pendants specifically provided a lower critical solution temperature (LCST) in an ether solvent, which was not observed with the random copolymer of same composition ratio.