Exogenous glutathione improves intracellular glutathione synthesis via the γ-glutamyl cycle in bovine zygotes and cleavage embryos.
Feng LiLixin CuiDawei YuHaisheng HaoYan LiuXueming ZhaoYunwei PangHuabin ZhuWeihua DuPublished in: Journal of cellular physiology (2018)
Excess reactive oxygen species (ROS) generated in embryos during in vitro culture damage cellular macromolecules and embryo development. Glutathione (GSH) scavenges ROS and optimizes the culture system. However, how exogenous GSH influences intracellular GSH and improves the embryo developmental rate is poorly understood. In this study, GSH or GSX (a stable GSH isotope) was added to the culture media of bovine in vitro fertilization embryos for 7 days. The cleavage rate, blastocyst rate, and total cell number of blastocysts were calculated. Similarly to GSH, GSX increased the in vitro development rate and embryo quality. We measured intracellular ROS, GSX, and GSH for 0-32-hr postinsemination (hpi) in embryos (including zygotes at G1, S, and G2 phases and cleaved embryos) cultured in medium containing GSX. Intracellular ROS significantly decreased with increasing intracellular GSH in S-stage zygotes (18 hpi) and cleaved embryos (32 hpi). γ-Glutamyltranspeptidase ( GGT) and glutathione synthetase ( GSS) messenger RNA expression increased in zygotes (18 hpi) and cleaved embryos treated with GSH, consistent with the tendency of overall GSH content. GGT activity increased significantly in 18 hpi zygotes. GGT and GCL enzyme inhibition with acivicin and buthionine sulfoximine, respectively, decreased cleavage rate, blastocyst rate, total cell number, and GSH and GSX content. All results indicated that exogenous GSH affects intracellular GSH levels through the γ-glutamyl cycle and improves early embryo development, enhancing our understanding of the redox regulation effects and transport of GSH during embryo culture in vitro.