Login / Signup

Tetraspanin CD37 Regulates β2 Integrin-Mediated Adhesion and Migration in Neutrophils.

Janet L WeeKeith E SchulzeEleanor L JonesLouisa YeungQiang ChengCandida F PereiraAdam CostinGeorg RammAnnemiek B van SprielMichael J HickeyMark D Wright
Published in: Journal of immunology (Baltimore, Md. : 1950) (2015)
Deciphering the molecular basis of leukocyte recruitment is critical to the understanding of inflammation. In this study, we investigated the contribution of the tetraspanin CD37 to this key process. CD37-deficient mice showed impaired neutrophil recruitment in a peritonitis model. Intravital microscopic analysis indicated that the absence of CD37 impaired the capacity of leukocytes to follow a CXCL1 chemotactic gradient accurately in the interstitium. Moreover, analysis of CXCL1-induced leukocyte-endothelial cell interactions in postcapillary venules revealed that CXCL1-induced neutrophil adhesion and transmigration were reduced in the absence of CD37, consistent with a reduced capacity to undergo β2 integrin-dependent adhesion. This result was supported by in vitro flow chamber experiments that demonstrated an impairment in adhesion of CD37-deficient neutrophils to the β2 integrin ligand, ICAM-1, despite the normal display of high-affinity β2 integrins. Superresolution microscopic assessment of localization of CD37 and CD18 in ICAM-1-adherent neutrophils demonstrated that these molecules do not significantly cocluster in the cell membrane, arguing against the possibility that CD37 regulates β2 integrin function via a direct molecular interaction. Moreover, CD37 ablation did not affect β2 integrin clustering. In contrast, the absence of CD37 in neutrophils impaired actin polymerization, cell spreading and polarization, dysregulated Rac-1 activation, and accelerated β2 integrin internalization. Together, these data indicate that CD37 promotes neutrophil adhesion and recruitment via the promotion of cytoskeletal function downstream of integrin-mediated adhesion.
Keyphrases