Login / Signup

Sequential elucidation of the β-Ca3(PO4)2/TiO2 composite development from the solution precursors.

P Nandha KumarSanjeevi Kannan
Published in: Dalton transactions (Cambridge, England : 2003) (2018)
The sequential formation of β-Ca3(PO4)2/TiO2 composites with assorted ratios synthesized from the solution precursors is described. The phase evolution of the synthesized powders to yield a composite during progressive heat treatments is determined through a set of analytical techniques. Investigation reveals the initial crystallization of apatite and anatase TiO2 (a-TiO2) mixtures at <800 °C. β-Ca3(PO4)2 crystallizes at ∼800 °C and its subsequent stability is retained until 1300 °C. Besides, a gradual phase transition of a- → rutile TiO2 (r-TiO2) transpires in the range of 800-1000 °C before the complete r-TiO2 transformation accomplishes at 1100 °C. The structural stability of the resultant β-Ca3(PO4)2/r-TiO2 composites is retained until 1300 °C. The β-Ca3(PO4)2 lattice also hosts a selective amount of Ti4+ and as a consequence the anticipated β- → α-Ca3(PO4)2 conversion that occurs at 1180 °C is delayed. TiO2 plays a crucial role in the attainment of dense and pore free microstructures of β-Ca3(PO4)2/r-TiO2 composites. The mechanical properties determined through nanoindentation revealed an upsurge trend as a function of TiO2 content in the composites.
Keyphrases
  • visible light
  • quantum dots
  • protein kinase
  • multiple sclerosis
  • gold nanoparticles
  • single cell
  • liquid chromatography