Login / Signup

Multiplexed Detection of Secreted Cytokines at near-Molecular Resolution Elucidates Macrophage Polarization Heterogeneity.

Vanessa HerreraSsu-Chieh Joseph HsuVeena Y NaveenWendy F LiuJered B Haun
Published in: Analytical chemistry (2021)
Monitoring the secretion of proteins from single cells can provide important insights into how cells respond to their microenvironment. This is particularly true for immune cells, which can exhibit a large degree of response heterogeneity. Microfabricated well arrays provide a powerful and versatile method to assess the secretion of cytokines, chemokines, and growth factors from single cells, but detection sensitivity has been limited to high levels on the order of 10,000 per cell. Recently, we reported a quantum dot-based immunoassay that lowered the detection limit for the cytokine TNF-α to concentrations to nearly the single-cell level. Here, we adapted this detection method to three additional targets while maintaining high detection sensitivity. Specifically, we detected MCP-1, TGF-β, IL-10, and TNF-α using quantum dots with different emission spectra, each of which displayed a detection threshold in the range of 1-10 fM or ∼1-2 molecules per well. We then quantified secretion of all four proteins from single macrophage cells that were stimulated toward a pro-inflammatory state with lipopolysaccharide (LPS) or toward a pro-healing state with both LPS and interleukin 4 (IL-4). We found that MCP-1 and TGF-β were predominantly secreted at high levels only (>10,000 molecules/cell), while a substantial number of cells secreted IL-10 and TNF-α at lower levels that could only be detected using our method. Subsequent principal component and cluster analysis revealed that secretion profiles could be classified as either exclusively pro-inflammatory, including MCP-1 and/or TNF-α, or more subtle responses displaying both pro-healing and pro-inflammatory characters. Our results highlight the heterogeneous and nondiscrete nature of macrophage phenotypes following in vitro stimulation of a cell line. Future work will focus on expanding the multiplexing capacity by extending emission spectra bandwidth and/or spatially barcoding capture antibodies, as well as evaluating the enhanced detection sensitivity capabilities with normal and diseased immune cell populations in vitro and in vivo .
Keyphrases