A RuCoBO Nanocomposite for Highly Efficient and Stable Electrocatalytic Seawater Splitting.
Le-Wei ShenYong WangJiang-Bo ChenGe TianKang-Yi XiongUlf Dietrich KahlertDavid CahenXiao-Yu YangPublished in: Nano letters (2023)
Efficient and stable electrocatalysts are critically needed for the development of practical overall seawater splitting. The nanocomposite of RuCoBO has been rationally engineered to be an electrocatalyst that fits these criteria. The study has shown that a calcinated RuCoBO-based nanocomposite (Ru 2 Co 1 BO-350) exhibits an extremely high catalytic activity for H 2 and O 2 production in alkaline seawater (overpotentials of 14 mV for H 2 evolution and 219 mV for O 2 evolution) as well as a record low cell voltage (1.466 V@10 mA cm -2 ) and long-term stability (230 h @50 mA cm -2 and @100 mA cm -2 ) for seawater splitting. The results show that surface reconstruction of Ru 2 Co 1 BO-350 occurs during hydrogen evolution reaction and oxygen evolution reaction, which leads to the high activity and stability of the catalyst. The reconstructed surface is highly resistant to Cl - corrosion. The investigation suggests that a new strategy exists for the design of high-performance Ru-based electrocatalysts that resist anodic corrosion during seawater splitting.