Login / Signup

Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico.

Valeria Valenzuela-RuizRosa Icela Robles-MontoyaFannie Isela Parra-CotaGustavo SantoyoMa Del Carmen Orozco-MosquedaRoberto Rodríguez-RamírezSergio DE Los Santos-Villalobos
Published in: 3 Biotech (2019)
The strain denominated TRQ65 was isolated from wheat (Triticum turgidum subsp. durum) commercial fields in the Yaqui Valley, Mexico. Here, we report its draft genome sequence, which presented ~ 4.5 million bp and 45.5% G + C content. Based on the cutoff values on species delimitation established for average nucleotide identity (> 95 to 96%), genome-to-genome distance calculator (> 70%), and the reference sequence alignment-based phylogeny builder method, TRQ65 was strongly affiliated to Bacillus paralicheniformis. The rapid annotation using subsystem technology server revealed that TRQ65 contains genes related to osmotic, and oxidative stress response, as well as auxin biosynthesis (plant growth promotion traits). In addition, antiSMASH and BAGEL revealed the presence of genes involved in lipopeptides and antibiotic biosynthesis. The function of those annotated genes was validated at a metabolic level, observing that strain TRQ65 was able to tolerate saline (91.0%), and water (155.0%) stress conditions, besides producing 28.8 ± 0.9 µg/mL indoles. In addition, strain TRQ65 showed growth inhibition (1.6 ± 0.4 cm inhibition zone) against the causal agent of wheat spot blotch, Bipolaris sorokiniana. Finally, plant-microbe interactions assays confirm the ability of strain TRQ65 to regulate wheat growth, showing a significant increment in shoot height (26%), root length (40%), shoot dry weight (48%), stem diameter (55%), and biovolume index (246%). These findings provide insights for future agricultural studies of this strain.
Keyphrases