Login / Signup

Raccoon spatial ecology in the rural southeastern United States.

Jacob E HillMadison L MillerJames L HeltonRichard B ChipmanAmy T GilbertJames C BeasleyGuha DharmarajanOlin E Rhodes
Published in: PloS one (2023)
The movement ecology of raccoons varies widely across habitats with important implications for the management of zoonotic diseases such as rabies. However, the spatial ecology of raccoons remains poorly understood in many regions of the United States, particularly in the southeast. To better understand the spatial ecology of raccoons in the southeastern US, we investigated the role of sex, season, and habitat on monthly raccoon home range and core area sizes in three common rural habitats (bottomland hardwood, upland pine, and riparian forest) in South Carolina, USA. From 2018-2022, we obtained 264 monthly home ranges from 46 raccoons. Mean monthly 95% utilization distribution (UD) sizes ranged from 1.05 ± 0.48 km2 (breeding bottomland females) to 5.69 ± 3.37 km2 (fall riparian males) and mean monthly 60% UD sizes ranged from 0.25 ± 0.15 km2 (breeding bottomland females) to 1.59 ± 1.02 km2 (summer riparian males). Males maintained home range and core areas ~2-5 times larger than females in upland pine and riparian habitat throughout the year, whereas those of bottomland males were only larger than females during the breeding season. Home ranges and core areas of females did not vary across habitats, whereas male raccoons had home ranges and core areas ~2-3 times larger in upland pine and riparian compared to bottomland hardwood throughout much of the year. The home ranges of males in upland pine and riparian are among the largest recorded for raccoons in the United States. Such large and variable home ranges likely contribute to elevated risk of zoonotic disease spread by males in these habitats. These results can be used to inform disease mitigation strategies in the southeastern United States.
Keyphrases
  • healthcare
  • climate change
  • south africa
  • high speed
  • atomic force microscopy