Antiviral Polymer Brushes by Visible-Light-Induced, Oxygen-Tolerant Covalent Surface Coating.
Andriy R KuzmynLucas W TeunissenMichiel V KroeseJet KantSandra VenemaHan ZuilhofPublished in: ACS omega (2022)
This work presents a novel route for creating metal-free antiviral coatings based on polymer brushes synthesized by surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization, applying eosin Y as a photocatalyst, water as a solvent, and visible light as a driving force. The polymer brushes were synthesized using N -[3-(decyldimethyl)-aminopropyl] methacrylamide bromide and carboxybetaine methacrylamide monomers. The chemical composition, thickness, roughness, and wettability of the resulting polymer brush coatings were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle measurements, and ellipsometry. The antiviral properties of coatings were investigated by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian influenza viruses, with further measurement of residual viable viral particles. The best performance was obtained with Cu surfaces, with a ca. 20-fold reduction of SARS-Cov-2 and a 50-fold reduction in avian influenza. On the polymer brush-modified surfaces, the number of viable virus particles decreased by about 5-6 times faster for avian flu and about 2-3 times faster for SARS-CoV-2, all compared to unmodified silicon surfaces. Interestingly, no significant differences were obtained between quaternary ammonium brushes and zwitterionic brushes.
Keyphrases
- sars cov
- respiratory syndrome coronavirus
- atomic force microscopy
- electron transfer
- visible light
- single molecule
- high resolution
- high speed
- biofilm formation
- coronavirus disease
- computed tomography
- ionic liquid
- magnetic resonance imaging
- cystic fibrosis
- positron emission tomography
- room temperature
- pet imaging
- optical coherence tomography
- protein kinase
- aqueous solution
- disease virus