Login / Signup

Theoretical Study of Vinyl-Sulfonate Monomers and Their Effect as the Dopants of Polyaniline Dimers.

Isis Rodríguez-SánchezAlain S Conejo-DávilaAnayansi Estrada-MonjeAlejandro Vega-RiosErasto Armando Zaragoza-Contreras
Published in: Molecules (Basel, Switzerland) (2022)
Establishing the structure-property relationships of monomers and polymers via theoretical chemistry is vital for designing new polymer structures with a specific application. Developing bifunctional monomers with selective polymerizable sites is one of the strategies employed to obtain complex polymeric systems. In this work, a theoretical study on anilinium 2-acrylamide-2-methyl-1-propanesulfonate (ani-AMPS) and anilinium 4-styrenesulfonate (ani-SS) monomers and their respective doped polyaniline dimer (PAni-d AMPS or PAni-d SS) was performed. The study focused on understanding the susceptibility of the vinyl group to a radical attack and the conformation changes resulting from the coordinated covalent bond between sulfonate and aniliniun. Applying Density Functional Theory with the B3LYP functional and a basis set of 6 - 31 + G(d,p), the structures of the ani-AMPS, ani-SS, PAni-d AMPS, and PAni-d SS were optimized, and the different chemical descriptors were determined. The simulation showed that the reactivity of the vinyl group in the ani-AMPS is slightly higher. The sulfonate group undergoes a conformational change when bonding with PAni-d AMPS or PAni-d SS compared to its respective bifunctional monomer. Additionally, the electronegativity of PAni-d depends on the dopant's structure. Thus, the bonded spacer between the vinyl and sulfonate groups (dopant) plays a notable role in the final characteristics of ani-AMPS, ani-SS, PAni-d AMPS, and PAni-d SS.
Keyphrases
  • density functional theory
  • molecular dynamics
  • drug delivery
  • molecular dynamics simulations
  • quantum dots
  • gold nanoparticles
  • metal organic framework
  • solid phase extraction