Login / Signup

Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves.

Danielle C ClaarSamuel StarkoKristina L TietjenHannah E EpsteinRoss CunningKim M CobbAndrew C BakerRuth D GatesJulia K Baum
Published in: Nature communications (2020)
Prospects for coral persistence through increasingly frequent and extended heatwaves seem bleak. Coral recovery from bleaching is only known to occur after temperatures return to normal, and mitigation of local stressors does not appear to augment coral survival. Capitalizing on a natural experiment in the equatorial Pacific, we track individual coral colonies at sites spanning a gradient of local anthropogenic disturbance through a tropical heatwave of unprecedented duration. Unexpectedly, some corals survived the event by recovering from bleaching while still at elevated temperatures. These corals initially had heat-sensitive algal symbiont communities, endured bleaching, and then recovered through proliferation of heat-tolerant symbionts. This pathway to survival only occurred in the absence of strong local stressors. In contrast, corals in highly disturbed areas were already dominated by heat-tolerant symbionts, and despite initially resisting bleaching, these corals had no survival advantage in one species and 3.3 times lower survival in the other. These unanticipated connections between disturbance, coral symbioses and heat stress resilience reveal multiple pathways to coral survival through future prolonged heatwaves.
Keyphrases
  • heat stress
  • hydrogen peroxide
  • free survival
  • climate change
  • magnetic resonance
  • magnetic resonance imaging
  • heat shock
  • gene expression
  • current status
  • nitric oxide
  • genetic diversity