Evaluation of the Anticancer Activity of Phytomolecules Conjugated Gold Nanoparticles Synthesized by Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin).
Alaa H AlkhathlanHessah A Al-AbdulkarimMerajuddin KhanMujeeb KhanMusaed AlkholiefAws AlshamsanAliyah AlmomenNorah AlbekairiHamad Z AlkhathlanMohammed Rafiq H SiddiquiPublished in: Materials (Basel, Switzerland) (2021)
The conventional physical and chemical synthetic methods for the preparation of metal nanoparticles have disadvantages as they use expensive equipment and hazardous chemicals which limit their applications for biomedical purposes, and are not environment friendly. However, for the synthesis of biocompatible nanomaterials, plant-based techniques are eco-friendly and easy to handle. Herein a simple, single-step biosynthesis of gold nanoparticles using aqueous extracts of Nigella sativa (NSE) and Zingiber officinale (GE) as a reducing and capping agent has been demonstrated. The formation of gold nanoparticles (Au NPs) was confirmed by X-ray diffraction, UV-Vis, and EDS spectroscopies. Spectroscopic and chromatographic analysis of GE and NSE revealed the presence of bioactive phytochemical constituents, such as gingerol, thymoquinone, etc., which successfully conjugated the surface of resulting Au NPs. TEM analysis indicated the formation of smaller-sized, less-aggregated, spherical-shaped Au NPs both in the case of GE (~9 nm) and NSE (~11 nm). To study the effect of the concentration of the extracts on the quality of resulting NPs and their anticancer properties, three different samples of Au NPs were prepared from each extract by varying the concentration of extracts while keeping the amount of precursor constant. In both cases, high-quality, spherical-shaped NPs were obtained, only at a high concentration of the extract, whereas at lower concentrations, larger-sized, irregular-shaped NPs were formed. Furthermore, the as-prepared Au NPs were evaluated for the anticancer properties against two different cell lines including MDA-MB-231 (breast cancer) and HCT 116 (colorectal cancer) cell lines. GE-conjugated Au NPs obtained by using a high concentration of the extract demonstrated superior anticancer properties when compared to NSE-conjugated counterparts.
Keyphrases
- gold nanoparticles
- reduced graphene oxide
- oxide nanoparticles
- sensitive detection
- photodynamic therapy
- oxidative stress
- ionic liquid
- physical activity
- mental health
- magnetic resonance
- high resolution
- young adults
- anti inflammatory
- drug delivery
- cell proliferation
- mass spectrometry
- cell cycle arrest
- electron microscopy
- contrast enhanced