Login / Signup

Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years.

Sophia FrangouAmirhossein ModabberniaSteven C R WilliamsEfstathios PapachristouGaelle E DoucetIngrid AgartzMoji AghajaniTheophilus N AkudjeduAnton Albajes-EizagirreDag AlnaesKathryn I AlpertMicael AnderssonNancy C AndreasenOle A AndreassenPhilip AshersonTobias BanaschewskiNuria BargalloSarah BaumeisterRamona Baur-StreubelAlessandro BertolinoAurora BonvinoDorret I BoomsmaStefan BorgwardtJosiane BourqueDaniel BrandeisAlan BreierHenry BrodatyRachel M BrouwerJan K BuitelaarGeraldo F BusattoRandy L BucknerVincent CalhounErick J Canales-RodríguezDara M CannonXavier CaserasFrancisco X CastellanosSimon CervenkaTiffany M Chaim-AvanciniChristopher R K ChingVictoria ChubarVincent P ClarkPatricia ConrodAnnette ConzelmannBenedicto Crespo-FacorroFabrice CrivelloEveline A CroneAnders M DaleUdo DannlowskiChristopher DaveyEco J C de GeusLieuwe de HaanGreig I de ZubicarayAnouk den BraberErin W DickieAnnabella Di GiorgioNhat Trung DoanErlend S DørumStefan EhrlichSusanne ErkThomas EspesethHelena Fatouros-BergmanSimon E FisherJean-Paul FoucheBarbara FrankeThomas FrodlPaola Fuentes-ClaramonteDavid C GlahnIan H GotlibHans-Jörgen GrabeOliver GrimmNynke A GroenewoldDominik GrotegerdOliver GruberPatricia GrunerRachel E GurRuben C GurTim HahnBen J HarrisonCatharine A HartmanSean N HattonAndreas HeinzDirk J HeslenfeldDerrek P HibarIan B HickieBeng-Choon HoPieter J HoekstraSarah HohmannAvram J HolmesMartine HoogmanNorbert HostenFleur M HowellsHilleke E Hulshoff PolChaim HuyserNeda JahanshadAnthony JamesTerry L JerniganJiyang JiangErik G JönssonJohn A JoskaRene KahnAndrew KalninRyota KanaiMarieke KleinTatyana P KlyushnikLaura KoendersSanne KoopsBernd KrämerJonna KuntsiJim LagopoulosLuisa LázaroIrina LebedevaWon Hee LeeKlaus-Peter LeschChristine LochnerMarise W J MachielsenSophie MaingaultNicholas G MartinIgnacio Martínez-ZalacaínDavid Mataix-ColsBernard MazoyerColm McDonaldBrenna C McDonaldAndrew M McIntoshKatie L McMahonGenevieve McPhilemySusanne MeinertJosé M MenchónSarah E MedlandAndreas Meyer-LindenbergJilly NaaijenPablo NajtTomohiro NakaoJan E NordvikLars NybergJaap OosterlaanVíctor Ortiz-García de la FozYannis PaloyelisPaul PauliGiulio PergolaEdith Pomarol-ClotetMaria J PortellaSteven G PotkinJoaquim RaduaAndreas ReifDaniel A RinkerJoshua L RoffmanPedro G P RosaMatthew D SacchetPerminder S SachdevRaymond SalvadorPascual Sánchez-JuanSalvador SarróTheodore D SatterthwaiteAndrew J SaykinMauricio H SerpaLianne SchmaalKnut SchnellGunter SchumannKang SimJordan W SmollerIris SommerCarles Soriano-MasDan J SteinLachlan T StrikeSuzanne C SwagermanChristian K TamnesHenk S TemminghSophia I ThomopoulosAlexander S TomyshevDiana Tordesillas-GutiérrezJulian N TrollorJessica A TurnerAnne UhlmannOdile A van den HeuvelDennis van den MeerNic J A van der WeeNeeltje E M van HarenDennis van 't EntTheo G M van ErpIlya M VeerDick J VeltmanAristotle VoineskosHenry VölzkeHenrik WalterEsther WaltonLei WangYang WangThomas H WassinkBernd WeberWei WenJohn D WestLars T WestlyeHeather WhalleyLara M WierengaKatharina WittfeldDaniel H WolfAmanda WorkerMargaret J WrightKun YangYulyia YonchevaMarcus V ZanettiGeorg C Zieglernull nullPaul M ThompsonDanai Dima
Published in: Human brain mapping (2021)
Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
Keyphrases